
Lecture Notes on Topological Data Analysis

STAT 37411, The University of Chicago

January 28, 2022

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 A Topological Signature For Point Cloud Data . 8

1.2.1 Construction of Homology . 9
1.3 A Topological Signature for Images . 9
1.4 Further Questions . 11
1.5 A Brief History . 11

2 Graphs and Clustering 13
2.1 Graphs . 13
2.2 Clustering . 15

2.2.1 Clustering - overview . 15
2.2.2 Single-Linkage clustering . 15

2.3 Path Components and Union-Find . 16
2.3.1 Data structure . 16
2.3.2 Algorithm . 18

2.4 Spectral Clustering . 19
2.4.1 The Graph Laplacian . 19
2.4.2 Clustering within Path Components . 20

3

4 CONTENTS

Preface

This set of lecture notes is being produced from a set of lectures on Topological Data Analysis given in the
winter 2022 offering of STAT 37411 at The University of Chicago, taught by Brad Nelson. Students are
being asked to contribute a transcription of one lecture each to these notes. Students who have contributed
so far are:

Each chapter covers material for a single lecture, which is sometimes augmented by looking at source code
or Jupyter notebooks. Additional material for this course including links to code and suggested readings
can be found online at stat37411.github.io.

These notes are a work in progress. Suggestions or corrections can be sent to:
Brad Nelson at bradnelson@uchicago.edu

5

stat37411.github.io

6 CONTENTS

Chapter 1

Introduction

In this chapter, we first give some motivation for the sorts of problems that topological data analysis might
try to solve, and then pursue a non-rigorous overview of persistent homology.

1.1 Motivation

Figure 1.1: 200 points sampled near a
figure-8.

Topological data analysis (TDA) is a field that uses topolog-
ical techniques to summarize and understand data. One line
of work in TDA seeks to understand structure in data, for
instance identifying clusters or holes in data. For example,
in figure 1.1 we see points sampled near a figure-8. Our hu-
man intuition looking at this figure is to see that while there
is some randomness in the points, they do indeed lie near a
figure-8. We might say that the underlying space has a sin-
gle connected component despite the fact that the sample is a
discrete set of 200 points, and two holes where points are not
sampled, despite the fact that there are many gaps or holes
between points. One of the goals of topological data analysis
is to produce a summary, or mathematical signature, for the
point cloud which will contain this same qualitative informa-
tion. This can be used as part of an exploratory data analysis
pipeline, and the results can be used to inform models of the
data. Perhaps one of the most well known applications of these
techniques in the field was the discovery of a Klein bottle in
natural image image patches [2]. This line of work leads to
many interesting questions such as under what conditions we
can recover the topological features of a manifold, and how
robust these topological signatures are to perturbations of data [3].

Figure 1.2: Left: a digital image of an
hand-written zero. Right: a digital im-
age of a hand-written one.

Another aspect to topological data analysis is to create topo-
logically meaningful features for machine learning. For example,
in figure 1.2, we see images of the digits zero, ”0”, and one, ”1”.
Topologicially, the representations these two digits are different;
both have a single connected component, but ”0” has a hole in
the middle, whereas ”1” does not. A topological machine learn-
ing model should be able to distinguish between these two digits
based on this observation alone. Of course, reality is much more
messy, as there may be gaps in a pen stroke, extreme variations in
handwriting, or artifacts of digitization. This line of work has led

to a variety of applications in fields such as materials discovery [4] and molecular property prediction [1].

7

8 CHAPTER 1. INTRODUCTION

1.2 A Topological Signature For Point Cloud Data

We’ll focus on the problem of obtaining a topological signature for point clouds such as in figure 1.1. A
natural approach which we employed visually is to group together points based on some notion of proximity.
In practice, we can build a generalization of a graph called simplicial complex based on this notion of
proximity. Briefly, simplicial complex X consists of a collection of vertices (0-simplices) X0, edges (1-
simplices) X1, triangles (2-simplicies) X2, and generally convex hulls of k + 1 points (k-simplices) Xk. We
denote a k-simplex as (x0, . . . , xk), where x0, . . . , xk ∈ X0, which can be thought of as the convex hull of
these k + 1 vertices. Given a data set X and a metric d : X×X → R+, the Vietoris-Rips complex R(X; r)
has R(X; r)0 = X, an edge set

R(X; r)1 = {(xi, xj) | d(xi, xj) ≤ r}, (1.1)

and all possible k-simplices k = 2, . . . , built from this edge set.

Figure 1.3: Vietoris-Rips complexes at various connectivity parameters. From left to right: r = 0.2, r = 0.5,
r = 1.0, and r = 2.0.

In figure 1.3 we see these Vietoris-Rips complexes built on our figure-8 samples. When the connectivity
parameter r is too small (on the far left), we do not yet have a single connected component. When r is too
large (on the far right), all structure is filled in. However, for a range of parameters we see something that
looks a lot like a figure-8 with a single connected component and two loops.

If we focus on a parameter r which captures the desired topology of the space, we can obtain an algebraic
signature of the space called homology. At a high-level, homology in dimension k, denoted Hk(X), is a vector
space which captures topological information about k-dimensional features of Hk(X). The dimension of
Hk(X), dimHk(X), also known as the k-th Betti number of X βk, counts k-dimensional topological features
of X : connected components in dimension 0, loops in dimension 1, and k-dimensional voids in dimension k.
For our figure-8, we have dimH0 = 1, and dimH1 = 2.

Homology is more powerful than a tool for counting topological features. It is a functor, which means
that if we have a map between topological spaces f : X → Y, homology produces an induced map Hk(f) :
Hk(X) → Hk(Y) which encodes a notion of how topological features in X map to features in Y. This is
critical for what we need next.

We still have a problem, which is that we had to choose the parameter r. Instead of focusing on choosing
the exact right value of r to use, it is easier to just consider all possible values of r and identify robust
features which persist for a large range of parameters. When considering all possible values of r, we obtain
a filtration of Vietoris-Rips complexes

R(X; r0) ⊆ R(X; r1) ⊆ . . . (1.2)

Note that since the sample X is finite, there are only a finite set of ri where the Vietoris-Rips complex
actually changes. Each inclusion is a map from the smaller simplicial complex to the next, so the homology
functor produces a diagram of vector spaces connected by linear maps

Hk(r0) Hk(r1) . . .
Hk(ι) Hk(ι)

(1.3)

where Hk(ι) is the map induced by inclusion.

1.3. A TOPOLOGICAL SIGNATURE FOR IMAGES 9

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Birth

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
De

at
h

H0
H1

Figure 1.4: Persistence diagram for
figure-8 sample, r = 0.5. Persistence
pairs for H0 are red, and for H1 are
blue.

If the diagram in equation (1.3) had only a single linear map, we
could classify it up to change of basis in each homology vector space
by its rank. For longer chains of linear maps, we can generalize
the rank to a classification in terms of what is called a persistence
barcode, or persistence diagram. In short, we obtain a set of birth-
death pairs Hk(R(X; r)) ∼= {(bi, di)}ni=1 where the pair (bi, di) has
an associated homology vector that appears at parameter bi for
the first time, and then maps through the diagram until entering
the kernel of the map at parameter di. The set of pairs can be
visualized in a two-dimensional plane, as is done in figure 1.4 for
the Vietoris-Rips filtration built on our sampling of the figure-8
in figure 1.1. Each point corresponds to a homology vector (red
points are H0 vectors and blue points are H1 vectors), where the
birth parameter of the vector is indicated on the horizontal axis,
and the death parameter is indicated by the vertical axis. Features
which are short-lived (topological noise) disappear shortly after
they appear, so are located near the dashed line d = b. Robust
features persist for large ranges of the parameter, so are far above

the diagonal. For the figure-8, we see a single red H0 point above the dashed red line indicating a connected
component that persists as r → ∞, as well as two blue H1 points well above the diagonal indicating there
are two robust loops.

1.2.1 Construction of Homology

Figure 1.5: Generators for H1 visual-
ized as colored cycles in the figure-8.

To make homology a little less mysterious, we’ll give a first pass at
explaining how homology of a simplicial complex X is computed.
The first step is to form a chain complex C∗(X) = {Ck(X), ∂k}∞k=0.
Every Ck(X) is a vector space with a basis element for each k-
simplex of X and the boundary map ∂k : Ck(X) → Ck−1(X) is a
linear map that sends the vector associated with a k-simplex to a
linear combination of vectors in its boundary (with ∂0 defined to
be 0). These boundary maps have the property that ∂k ◦∂k+1 = 0,
which means that ker ∂k ⊆ img ∂k+1.

Homology in dimension k is defined as the quotient vector space
ker ∂k/ img ∂k+1. Each non-zero vector in Hk(X) is an equivalence
class of vectors in Ck(X), and we can choose a representative in
Ck(X) which generates the vector in Hk. Examples of these gen-
erators for H1 of our figure-8 can be seen in figure 1.5.

There are two aspects to interpreting these representatives that
require some care: first, the choice of basis for homology is not
unique, and second, the choice of representative for a homology
class is not unique either. Another detail that requires some atten-
tion is the choice of field when forming the chain complex C∗(X).
Because we want exact kernels and images, it is often best to avoid
floating point arithmetic used for computation when the field is R,
and in practice finite fields or rational numbers are used. Depending on the choice of field, we may even end
up with different dimensions in homology! In later lectures, we will cover homology and its variants in more
detail.

1.3 A Topological Signature for Images

Now, let’s turn to how we might produce a classifier for images of digits based on topological features,
again using persistent homology. The digits in figure 1.2 are very different data than the point cloud in

10 CHAPTER 1. INTRODUCTION

f 1((, 4]) f 1((, 8]) f 1((, 12]) f 1((, 15]) f 1((, 4]) f 1((, 8]) f 1((, 12]) f 1((, 15])

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Birth

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
at

h

PH signature for 0

H0
H1

0.0 0.2 0.4 0.6 0.8 1.0
Birth

0.0

0.2

0.4

0.6

0.8

1.0

De
at

h

PH signature for 1

H0

Figure 1.6: Sublevel set filtrations and persistence diagrams of the zero and one digits in figure 1.2.

figure 1.1, but we can again use persistent homology by choosing a different filtration. We will think of
images as functions on a square, which we triangulate to form a simplicial complex with vertex set in
correspondence with the pixels of the image. In a black and white image, pixel intensity is a real-valued
function f : X → R, and we can consider sublevel sets f−1((−∞, a]) of the image to form a filtration since
f−1((−∞, a]) ⊆ f−1((−∞, b]) if a ≤ b.

In figure 1.6, we see how the persistent homology of a ”0” digit computed from a sublevel set filtration
has a robust H1 vector, whereas the ”1” digit has no H1 vectors. We also see that the ”0” digit has several
less robust H0 features, likely due to varying pen pressure when the digit is drawn. How might we classify
the digits based on these observations? Let’s produce two features. The first will be the maximum length
of a H1 vector,

max{|di − bi| | (bi, di) ∈ H1(X)}

The second will be the sum of the lengths of finite H0 vectors∑
(bi,di)∈H0(X)

|di − bi|I|di−bi|<∞

If we plot these two features computed over many examples of the digits zero and one, as in figure 1.7,

0 5 10 15 20 25 30 35
sum H0 lengths

0

2

4

6

8

10

12

m
ax

 H
1 l

en
gt

h

digit
0
1

Figure 1.7: Two persistent-homology derived features computed for digital images of the digits ”0” and ”1”.

we see a nice separation between the digits. Note that for some ”1” digits, there are short H1 vectors, and
some ”0” digits have a small sum of H0 lengths, but between these two features we can visually classify the
digits.

1.4. FURTHER QUESTIONS 11

1.4 Further Questions

We have now seen two different examples of problems that topological data analysis might try to address.
We will cover these and related problems in more detail as well as other model problems in this course. Here
are some other questions that we may wish to consider as we proceed:

1. Constructions What different constructions of topological spaces can be used in addition to Vietoris-
Rips complexes, and this triangulated grid for images? How might these relate to each other?

2. Stability How much does persistent homology of the Vietoris-Rips construction change if the input
point cloud changes a little? What if the pixel values in an image change a little? Is the output stable
with respect to perturbations of the input?

3. Sampling If points are sampled from some ground truth space/manifold, can the homology of the
space be recovered from the sampling?

4. Computation How can topological spaces be represented on a computer? How is homology really
computed? How can this be done efficiently?

5. Generalizations and Alternatives What about more than one filtration parameter? In what other
ways might topological signatures be constructed from input data?

6. Modeling How can topological data analysis be applied to real problems? What are some examples
and are there any principles for success?

1.5 A Brief History

12 CHAPTER 1. INTRODUCTION

Chapter 2

Graphs and Clustering

2.1 Graphs

A graph G(V,E) is a collection of nodes V = {1, . . . , N} and edges E ⊂ V × V . We will use the convention
that the number of nodes in a graph is N = |V | and the number of edges in the graph is M = |E|. We
will generally consider undirected, unweighted graphs. Below, we can see a visual characterization of each
of those type of graphs:

Directed graph

Figure 2.1: Directed graph example. Source: https://commons.wikimedia.org/wiki/File:Directed.svg

Undirected graph

Figure 2.2: Undirected graph example. Source: https://commons.wikimedia.org/wiki/File:Undirected.svg

13

14 CHAPTER 2. GRAPHS AND CLUSTERING

Weighted graph

Figure 2.3: Weighted graph example.

Examples of graphs Below there are some examples of graphs. The edges generally encode relations
between entities.

• Social networks→G(individuals, friendrelations)

• Transportation networks→G(cities, roads)

• Food webs→G(species, prey/predators)

We can also consider a neighborhood graph with respect to a given data set if we define observations as
nodes and edges as some distance metric that are below some threshold radius r. That isG(observations, distance)
such that d(i, j) < r.

Definition 2.1.1. The neighborhood of a vertex v ∈ V is the set N(v) ⊆ V such that:

N(v) = {w ∈ V |(v, w) ∈ E} (2.1)

With this notions and definition of graphs, we can define a path between the elements of a graph.

Figure 2.4: Vertex neighborhood example

Definition 2.1.2. A path from i ∈ V to j ∈ V is a sequence of edges

(i, k0), (k0, k1), ..., (kp−1, kp), (kp, j)

i and j are in the same connected component if ∃ path between i and j.

Proposition 2.1.3. Path connectedness is an equivalence relation i ≃ j if there exists a path i →j such that
it satisfies the following properties: identity, reflexivity and symmetry properties.

Note that with these properties in place, we can compose paths such that i ≃ j and j ≃ k ⇒ i ≃ k. The
equivalence class of this equivalence relation is the connected component.

2.2. CLUSTERING 15

2.2 Clustering

2.2.1 Clustering - overview

Clustering is an extensive topic in the Statistics and Computer Science fields and the overall idea is simple
and intuitive: group points/observations/samples based in some measure of similarity. These formed groups
are named ”clusters”.

There are many ways of defining it and also many algorithms available for this task (DBSCAN, K-means,
...). Moreover, the literature accounts for challenges regarding the unification of many of the proposed
approaches as presented in Kleinberg [5].

Given a distance/similarity measure, groups of points that are closer together and far apart from other
groups are easier to cluster. The more ”overlap” between the groups make the clustering task harder. Vi-
sually, we have:

Clustering idea - example

Figure 2.5: Clusters of points - example

To the extent of these notes, the focus will be on Single Linkage clustering because it’s notion is
topologically meaningful.

2.2.2 Single-Linkage clustering

Single Linkage clustering forms a graph that connects points that are near each other. The clusters merge
if there is a single link between them. Thus, in the end, all points are merged in a single cluster. We
can then evaluate how the clusters are formed, by looking at the neighborhood graph changes accord-
ing to a distance threshold parameter r. Thus, the clusters structure is depicted in a dendrogram,
that shows how clusters merge as distance threshold parameter r varies. Below, there is an example:

Dendrogram - example

16 CHAPTER 2. GRAPHS AND CLUSTERING

Figure 2.6: r0 < r1 < r2

Single linkage is one possible technique to form clusters. There is also another options such as Average
linkage and Complete linkage.

2.3 Path Components and Union-Find

2.3.1 Data structure

In order to compute a dendrogram, we can use a data structure called union-find data structure. Other
possible names are disjoint-set data structure or merge-find data structure.

This data structure allows two operations:

• find(): called to find connected components

• merge(): called to merge two connected components

Dendrogram construction outline

• Every cluster has a representative point = rep(.)

• Every vertex has a parent in the same cluster

• A representative point is it’s own parent

Data structure - example

Figure 2.7: Original vertices

2.3. PATH COMPONENTS AND UNION-FIND 17

Figure 2.8: c is the representative point

To merge two clusters, we must find the representative for each cluster, and then make the parent of the
smaller cluster the representative point for the larger cluster.

An important idea fir ensure an adequate performance of the algorithm implementation is path com-
pression. The idea is to make every vertex point to the parent.

Figure 2.9: Source: https://hideoushumpbackfreak.com/algorithms/data-struct-union-find

18 CHAPTER 2. GRAPHS AND CLUSTERING

Computational representaion

• List data structure: N points Array

• ”Parent”: Array of length N

• parent[i]: j

• parent[i]: i, if i is the representative point of the cluster

To form the dendogram, every time we add an edge to the neighborhood graph (i, j) and try to merge
clusters that contain points i and j {

rep(i) = rep(j) ⇒same cluster

rep(i) ̸= rep(j) ⇒ merge(i, j)
(2.2)

Within this setting, the dendogram just need to keeps track which components merged, and which edge
caused this to happen, so it is possible to look up the parameter value r as presented in the outline above.
The complexity of this algorithm is O(m ∗ α(n)), where α(n) is the inverse Ackerman function.

2.3.2 Algorithm

Algorithm 1 Find representative of a query point.

1: procedure Find(parent, i)
2: Input: Array of parents parent, query index i.
3: root = i
4: while parent[root] != root do ▷ find cluster representative
5: root = parent[root]

6: while parent[i] != root do ▷ Do path compression
7: p = parent[i];
8: parent[i] = root;
9: i = p;

10: return: root

Algorithm 2 Merge clusters

1: procedure Merge(parent, size, i, j)
2: Input: Array of parents parent, Array of clusters size, query index i, query index j.
3: i = Find(parent, i)
4: j = Find(parent, j)
5: if i=j return: false
6: if size[i]=size[j]: ▷ Swap if necessary so size[i] = size[j]
7: tmp = j
8: j = i
9: i = tmp

10: parent[j] = i ▷ Merge the two clusters
11: size[i] = size[i] + size[j]
12: return: true

http://https://en.wikipedia.org/wiki/Ackermann_function#Inverse

2.4. SPECTRAL CLUSTERING 19

Algorithm 3 Dendogram

1: procedure Dendogram(n, edges)
2: Input: number of points n, Array of tuples edges.
3: d = Array()
4: SET d.size = n
5: parent = Array()
6: SET parent.default = 0
7: size = Array()
8: SET size = n
9: SET size.default = 1 ▷ All clusters start with 1 point, i.e, every node is a cluster of it’s own

10: ei = 0
11: for edge in edges:
12: i = edge[0]
13: j = edge[1]
14: ip = find(parent, i)
15: jp = find(parent, j)
16: if merge(parent, size, i, j) ▷ Merge smaller cluster to larger cluster
17: if size[ip] ≤ size[jp]:
18: tuple = tuple(ip, jp, ei)
19: d.append(tuple)
20: else
21: tuple = tuple(jp, ip, ei)
22: d.append(tuple)
23: INCREMENT ei
24: return: d

2.4 Spectral Clustering

2.4.1 The Graph Laplacian

First, we recall the definition of the incidence matrix B ∈ RN×M , which encodes the relationships between
nodes and edges:

B[i, k] = −1 ek = (i, j)

B[j, k] = +1 ek = (i, j)

B[·, k] = 0 otherwise

(2.3)

For an undirected graph we can choose the sign arbitrarily for the edge ek = (i, j), as long as B[i, k] =
−B[j, k].

The graph Laplacian L ∈ RN×N is defined as L = BBT .

Exercise 2.4.1. The graph Laplacian L can also be written L = D − A where D is the diagonal degree
matrix of the graph G, and A is the indicdence matrix of G.

Proposition 2.4.2. L satisfies the following properties:

1. xTLx =
∑

(i,j)∈E(xj − xi)
2

2. L is symmetric, positive semi-definite

3. The null eigenspace of L is spanned by indicators on connected components.

Proof. Item 1: xTLx = (BTx)T (BTx). BTx is a M -dimensional vector whose k-th entry is (BTx)[k] =
xj − xi. The quadratic form xTLx is just the inner product of this vector with itself, so

xTLx =
∑

(i,j)∈E

(xj − xi)
2 (2.4)

20 CHAPTER 2. GRAPHS AND CLUSTERING

Item 2: symmetry is easy, since L = BBT . Positive semi-definite means that xTLx ≥ 0 for any x ∈ RN .
From item 1, we know that this is the sum of squares

∑
(i,j)∈E(xj − xi)

2. Every entry in the sum is
non-negative, so the sum is non-negative.

Item 3: because L is symmetric its eigenvalues are real and there exists an orthogonal eigenbasis
{(vi, λi)}Ni=1 for L, so Lvi = λivi, and vTi vj = 0 if i ̸= j. Let IC ∈ RN denote the indicator vector on
a path-connected component C ⊆ V :

IC [i] =

{
1 i ∈ C

0 i /∈ C
(2.5)

Note that vTi Lvi = λi∥vi∥22, and vTj Lvi = 0. As a result, if xTLx = 0, then x is in the null eigenspace of L.
We can verify that

ITCLITC =
∑

(i,j)∈E

(IC [j]− IC [i])2

=
∑

(i,j)∈E

(0)2

= 0

because any edge (i, j) connects two vertices in the same path component. Either i, j ∈ C, in which case
IC [j] − IC [i] = 1 − 1 = 0, or thare are in a different path component and IC [j] − IC [i] = 0 − 0 = 0. We
conclude that IC is in the null eigenspace of L.

Now, suppose that x is a vector in the null eigenspace of L. Then xTLx = 0. This means the sum∑
(i,j)∈E(xj − xi)

2 = 0. Because the sum is zero, and all terms in the sum are non-negative, every term in

the sum must be zero. This means x[j] − x[i] = 0 for all (i, j) ∈ E, which implies that x[j] = x[i] for any
two vertices in the same path component. As a result, any eigenvector in the nullspace is in the span of
indicators of connected components.

Furthermore, since vertices belong to a unique path component, if C,D ⊆ V are distinct path components
then the vectors IC and ID are orthogonal.

As s a result of proposition 2.4.2, we can identify path-connected components of a graph by computing
the null eigenspace of the graph Laplacian.

2.4.2 Clustering within Path Components

We’ll now restrict our attention to a graph G which has a single path component. In this case, the null
eigenspace is spanned by the constant vector I. We would generally like to be able to cluster within path
components. What we would like to do is to partition the vertex set V into S, S̄ ⊂ V , where S ∪ S̄ = V and
S ∩ S̄ = ∅ as to minimize the number of edges that connect the two sets. Let

E(S, S̄) = {(i, j) ∈ E | i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S} = (S × S̄ ∪ S̄ × S) ∩ E

denote the set of edges that connect S and S̄. Let vS = (IS − IS̄)/2, and note that

vTSLvS =
∑

(i,j)∈E

((IS [j]− IS [i] + IS̄ [i]− IS̄ [j])/2)2

=
∑

(i,j)∈S×S̄∩E

(1)2 +
∑

(i,j)∈S̄×S∩E

(1)2

= |E(S, S̄)|

Note that if we’re seeking to minimize |E(S, S̄)| that we’re trying to minimize this quadratic form subject
to some constraints. One way to approach this is to look at the eigenvector v1 associated with the smallest
non-zero eigenvalue of the graph Laplacian, λ1 and to partition the graph based on the sign of the entries
in the vector vi.

S = {i | v1[i] > 0} (2.6)

2.4. SPECTRAL CLUSTERING 21

Note that there is a sign ambiguity in eigenvectors, but it doesn’t matter. We recover the same partition
S, S̄ either way.

Normalization of eigenvectors.
The Cheeger inequality gives a notion of how well a cut based on the smallest non-zero eigenvalue

approximates an optimal cut.

22 CHAPTER 2. GRAPHS AND CLUSTERING

Bibliography

[1] Zixuan Cang and Guo-Wei Wei. TopologyNet: Topology based deep convolutional and multi-task neural
networks for biomolecular property predictions. PLOS Computational Biology, 13(7):e1005690, July
2017.

[2] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. On the Local Behavior of
Spaces of Natural Images. International Journal of Computer Vision, 76(1):1–12, January 2008.

[3] Frédéric Chazal, David Cohen-Steiner, Leonidas J. Guibas, Facundo Mémoli, and Steve Y. Oudot.
Gromov-Hausdorff Stable Signatures for Shapes using Persistence. In Computer Graphics Forum, vol-
ume 28, pages 1393–1403. Wiley Online Library, 2009.

[4] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, and
Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent homology.
Proceedings of the National Academy of Sciences, June 2016.

[5] Jon Kleinberg. An impossibility theorem for clustering. In Proceedings of the 15th International Con-
ference on Neural Information Processing Systems, NIPS’02, pages 463–470, Cambridge, MA, USA,
January 2002. MIT Press.

23

	Introduction
	Motivation
	A Topological Signature For Point Cloud Data
	Construction of Homology

	A Topological Signature for Images
	Further Questions
	A Brief History

	Graphs and Clustering
	Graphs
	Clustering
	Clustering - overview
	Single-Linkage clustering

	Path Components and Union-Find
	Data structure
	Algorithm

	Spectral Clustering
	The Graph Laplacian
	Clustering within Path Components

